Farey Sequences and Ford Circles

Based on notes from Dana Paquin and from Joshua Zucker and the Julia Robinson Math Festival.

1 Organizing Fractions

On the first row of the sequence of Farey fractions, we have two fractions: 0 and 1, which we write in lowest terms as $\frac{0}{1}$ and $\frac{1}{1}$.

On each row after that, we insert all the fractions between 0 and 1 with a denominator one higher than the biggest denominator of the previous line. That is, line 2 gets the fractions with denominator 2, line 3 gets the fractions with denominator 3, and so on.

Here are the first few rows.

		$\frac{C}{1}$	$\frac{1}{1}$, $\frac{1}{1}$	- -		
		0	1	1		
		$\overline{1}$,	$\overline{2}$,	$\overline{1}$		
	0	1	1	2	1	
	$\overline{1}$,	$\overline{3}$,	$\overline{2}$,	$\overline{3}$,	$\overline{1}$	
0	1	1	1	2	3	1
$\overline{1}$,	$\overline{4}^{ ,}$	$\overline{3}$,	$\overline{2}$,	$\overline{3}$,	$\overline{4}$,	$\overline{1}$

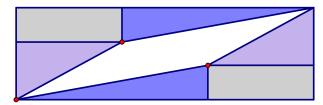
Write out the next few rows.

2 Fraction Patterns

- 1. Magical Property #1: Look at pairs of adjacent fractions. What do you notice about them? (Hint: Cross-multiply)
- 2. Magical Property #2: When you insert a new fraction, look at the fractions to its right and left. How does the numerator and denominator of the new fraction relate to its old neighbors?

3 Why do these patterns hold?

- 3. Magical Property #1 can be proved from Pick's Theorem, which relates the area of a lattice polygon to the number of interior lattice points and the number of boundary lattice points.
 - (a) Write down Pick's Theorem from last time or ask someone what it says.
 - (b) Suppose that $\frac{a}{b}$ and $\frac{c}{d}$ are two successive terms of Fn. Let T be the triangle with vertices (0,0), (a,b), and (c,d).
 - (c) Show that T has no lattice points in its interior, i.e. I(T) = 0.
 - (d) Show that the only boundary points of T are the vertices of the triangle, i.e. B(T) = 3.
 - (e) Conclude, using Picks Theorem, that $A(t) = \frac{1}{2}$, where A(T) means the area of T.
 - (f) Use geometry to show that $A(T) = \frac{1}{2}(bc ad)$. Hint: use this picture.



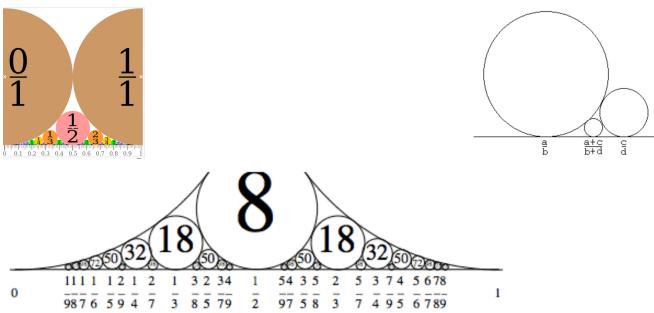
- (g) Use the above facts to show that Magical Property #1 holds.
- 4. Suppose that $\frac{a}{b} < \frac{c}{d} < \frac{e}{f}$ are three consecutive Farey fractions. Magical Property #2 can be proved from Magical Property #1, as follows.
 - (a) Write down the equations for Magical Property #1 for $\frac{a}{b} < \frac{c}{d}$ and for $\frac{c}{d} < \frac{e}{f}$, and set these equations equal to each other.
 - (b) Rearrange the resulting equation to prove Magical Property # 2.
- 5. Can you show that all the fractions that have the relationship of Magic Property #1 eventually show up as neighbors in a Farey sequence? If not, can you find an example that doesn't work? Hint: show that if $\frac{a}{b} < \frac{c}{d} < \frac{e}{f}$, then $d \ge b + f$.

4 Ford Circles

6. Place the fractions along a number line. You may just want to write just the first few rows of the Farey fractions. On top of each fraction, like a wheel resting on the number line, draw a circle. If the fraction is $\frac{a}{b}$ then the circle should have radius $\frac{1}{2b^2}$. If you draw your diagram roughly to scale, you may make an amazing discovery! These circles are called the Ford circles.

- 7. First let's investigate tangent circles in general. Draw a horizontal line, and two circles that touch the line and touch each other, one of radius r and one of radius R. Determine the distance between the two points where the circles touch the horizontal line in terms of r and R.
- 8. Suppose that you have a circle of radius $\frac{1}{2b^2}$ resting above $\frac{a}{b}$ and a circle of radius $\frac{1}{2d^2}$ resting above $\frac{c}{d}$ and suppose that these two circles happen to be tangent. Use the previous step to show that $\frac{a}{b}$ and $\frac{c}{d}$ have Magic Property #1.
- 9. Reverse your steps to show that if $\frac{a}{b}$ and $\frac{c}{d}$ have Magic Property #1, then the circles of radius $\frac{1}{2b^2}$ and $\frac{1}{2d^2}$, respectively, above them, are tangent.
- 10. Now what can you prove about the Ford circle for a newly inserted fraction in relation to the Ford circles of its neighbors?

Here are some hints in the way of pictures:



Figures from http://blog.wolfram.com/2010/06/16/the-circles-of-descartes/, https://en.wikipedia.org/wiki/Ford_circle, and http://www.cut-the-knot.org/proofs/fords.shtml.