Alien Arithmetic November 12, 2016

3 Number Bases

From now on, a number written with a subscript will mean that that number is written using a the subscript as a base. That is, 11_6 means 11 base 6 – that is, the number encoded as 11 in a $1 \leftarrow 6$ machine, which is the number 7. A number without a base means ordinary base 10. So, for example, $20_6 = 12$ and $113_6 = 45$.

- 5. Write these numbers in base 10:
 - (a) 15_7
 - (b) 35₇
 - (c) 45_7
 - (d) 412_7
- 6. Write these numbers in base 7:
 - (a) 13
 - (b) 48
 - (c) 63
 - (d) 625
 - (e) 1000

Extra problems:

- 7. Write in decimal (base 10) notation the numbers 10101₂, 10101₃, 211₄, 126₈.
- 8. Write the number 100_{10} in base 2, base 3, base 4, base 5, base 6, base 7, base 8, base 9.

Alien Arithmetic November 12, 2016

4 Alien Arithmetic

- 1. Add $11121_3 + 122110_3$ (in base 3).
- 2. Multiply 102_3 by 201_3 (in base 3).
- 3. Calculate:
 - (a) $341_5 + 203_5$
 - (b) $144_5 + 213_5$
 - (c) $413_5 22_5$
 - (d) $22_5 \times 31_5$
- 4. Calculate
 - (a) $1100_2 + 1101_2$
 - (b) $1011_2 101_2$
 - (c) $100011_2 10100_2$
 - (d) $1011_2 \times 101_2$
 - (e) $10101_2 \div 11_2$
- 5. Calculate
 - (a) $101102_3 + 22012_3$
 - (b) $10120_3 212_3$
 - (c) $2012_3 \times 112_3$

Extra Problems

- 6. Count to 100_3 in base 3.
- 7. Write down the addition and multiplication tables in base 4.
- 8. Write down the addition and multiplication tables in base 5.